Detailed reaction mechanism of macrophomate synthase. Extraordinary enzyme catalyzing five-step transformation from 2-pyrones to benzoates.

نویسندگان

  • K Watanabe
  • T Mie
  • A Ichihara
  • H Oikawa
  • M Honma
چکیده

Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration. The catalytic mechanism of the whole pathway was investigated in three separate chemical steps. In the first decarboxylation step, the enzyme loses oxalacetate decarboxylation activity upon incubation with EDTA. Activity is fully restored by addition of Mg(II) and is not restored with other divalent metal cations. The dissociation constant of 0.93 x 10(-)(7) for Mg(II) and atomic absorption analysis established a 1:1 stoichiometric complex. Inhibition of pyruvate formation with 2-pyrone revealed that the actual product in the first step is a pyruvate enolate, which undergoes C-C bond formation in the presence of 2-pyrone. Incubation of substrate analogs provided aberrant adducts that were produced via C-C bond formation and rearrangement. This strongly indicates that the second step is two C-C bond formations, affording a bicyclic intermediate. Based on the stereospecificity, involvement of a Diels-Alder reaction at the second step is proposed. Incubation of the stereospecifically deuterium-labeled malate with 2-pyrones in the presence of malate dehydrogenase provided information for the stereochemical course of the reaction catalyzed by macrophomate synthase, indicating that the first decarboxylation provides pyruvate (Z)-[3-(2)H]enolate and that dehydration at the final step occurs with anti-elimination accompanied by concomitant decarboxylation. Examination of kinetic parameters in the individual steps suggests that the third step is the rate-determining step of the overall transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate MultistepDiversity of Macrophomate Synthase Catalyzing Transformation from 2 - Pyrones to Benzoatesan Unusual

mation to modify an existing enzyme for adcling another function or to create a new enzyme that can transform molecules in a stereoeontrolled manner, Yamamoto's group4'5} have previously shown that macrophomic acid (1)6] and the phytotoxin, pyrenochaetic acid (2),7) were biotransformed from the corresponding 2-pyrones, 3 and 4 (pyrenocine A8,9)), and a C3-acid precursor by the fungus, Macrophom...

متن کامل

Thermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study

Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...

متن کامل

Norcoclaurine synthase: mechanism of an enantioselective pictet-spengler catalyzing enzyme.

The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids...

متن کامل

Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.

Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a m...

متن کامل

Potato Tuber UDP-Glucose:Protein Transglucosylase Catalyzes Its Own Glucosylation.

Potato (Solanum tuberosum L.) tuber UDP-glucose:protein transglucosylase (UPTG) (EC 2.4.1.112) is involved in the first of a two-step mechanism proposed for protein-bound alpha-glucan synthesis by catalyzing the covalent attachment of a single glucose residue to an acceptor protein. The resulting glucosylated 38-kilodalton polypeptide would then serve as a primer for enzymic glucan chain elonga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 49  شماره 

صفحات  -

تاریخ انتشار 2000